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Abstract

Recent analysés of several experiments proposed for an earth
orbiting space station have shown it advantageous to allow the experi-
ments to float freely inside the spacecraft. Perturbating forces and/
or experimental locations at other than the center of mass, however,
will cause relative motion between the experimental apparatus and the
spacecraft.

This work sets forth a linearized perturbation method for calcula-
ting the relative motion, including the prediction of possible collision
with the spacecraft. The theory is then applied in detail to two
probable attitude orientation modes of a NASA Skylab vehicle in earth
orbit.
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I. INTRODUCTION

With the advent of earth orbiting workshops, the possibility of
permitting objects within the spacecraft to "drift" for long periods
of time becomes of special interest. 1In this manner, an experiment
package, for example, could be kept free of the effects of aerodynamic
forces, radiation pressure, and the zero order gravitational field of
the spacecraft environment.

An obvious restriction on the trajectory of the object is collision
with the walls of the spacecraft. This event is dependent upon the
force field experienced by the bodies, the motion of the spacecraft
about its center of mass, and the initial position and velocity of the
particle. 1In order to avoid a collision for the longest period of time,
or to reduce the maneuvering of the spacecraft to a minimum, it is
necessary to determine the initial conditions and orientation of the
vehicle which produce the optimum trajectory.

In this preliminary analysis, the steps necessary for treating
the general problem are indicated, but, due to the complexity of the‘
problem, only the special cases possessing the following characteristics
are considered in detail:

a) The oblateness of the earth is neglected.

b) Initially the spacecraft is assumed to be in a circular
earth orbit of about 435 km.

¢) The spacecraft gravity field is neglected. Only the first
order (gravity gradient) force due to the earth is assumed

to act on the particle.

d) Only the zero:and first order gravitational forces due to
the earth and aerodynamic forces are assumed to act on the

spacecraft.

e) 'Two orientations of the spacecraft are considered: a
"yertical hold," and an "inertial hold," as to be explained
in Section II.l.

f) The variational theory utilized to describe the motion <f the
object relative to a circular reference orbit is a linearized
perturbation theory. It is applicable due to the small
differences anticipated between the two orbits.
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‘n conjunction with items (d) and (f), a subtlety in the applica-

tion of the theory should be explained. The net aerodynamic force

ting the spacecraft is considered mathematically as acting on the
le and in the opposite direction as the actual force acting on

4

the spacecraft. Because of the linear theory used, this has no effect
on the description of the motion of the particle relative to the

center of mass of the spacecraft. With this approach, the center of

emains in a perfectly circular orbit. Hence, the only error

introduced is in the description of the orbit of the spacecraft, a

matter of no importance here, as long as the deviations remain small.



II. LINEARIZED VARIATIONAL EQUATIONS OF MOTION

II.]l Coordinate Systems

As mentioned in I, the description of the relative motion between
the particle and the spacecraft depends, in part, on the orientation
of the spacecraft throughout the flight. For the two particular
orientations considered here, it is advantageous in each case to
adopt a coordinate system which remains fixed relative to the body of
the spacecraft.

In the so-called "vertical hold" mode, the spacecraft rotates at
orbital frequency in the plane of the orbit such that the same side
of the spacecraft continually faces the earth. A conventional rotating
coordinate system (r,s,z) is defined by

r
£=—.
r
~ - ~ ~ r xv
s =h Xr where h =
lr xv
z=h
with origin at the attractive center (Figure I). For a circular

reference orbit, s = v / |v

particle
—

center of mass
7 of spacecraft

Earth reference
orbit

Figure I. Coordinate System for the Vertical
Hold Mode.



The relative particle position and velocity (according to an observer
rotating with the system) will be denoted by

or 33
Sr = 8s and oxr = 8s|.
8z 8z

Bacause these quantities represent deviations from the reference orbit
of the spacecraft, they may be thought of as position and velocity in
a rotating coordinate system with origin located at the center of mass .

of the spacecraft. The associated state vector at time tj is defined
as

In the inertial hold mode of operation, the spacecraft is kept
from rotating relative to inertial space. In this case, nonrotating
coordinates are selected, and deviations in position and velocity
{a nonrotating observer in this case) are

§x évx
§r = Sy and v = évy
8§z sv
and the state vector is defined as
sr
v, = (2)
25 .
§v
t =t
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These quantities represent the motion of the particle relative to
a nonrotating coordinate system with origin at the spacecraft centex
of mass. Note that the z axes are the same in both coordinate systems
and the other two pairs of axes are defined so as to coincide at time

ti (Figure II).

/

circular reference
orbit

Figure II. The Local Coordinate Systems at Two
Different Times, ty and tj.
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IL.2

The.Differential Variational Bguations of Motion

in Rotating Coordinates

The linearized variational matrix eguation for the motion of the

particle relative to the center of mass is

where

radiation,

connected to the particle,

- gravity gradient matrix

acceleration of the particle

(3

disturbing accelerations (aerodynamic, electrostatic

)

oblateness of the earth, tension from wires

spacecraft gravity field,

If the spacecraft gravity gradients are neglected, and the earth is

considered as a point mass,

For all practical purposes, U equals the product of the universal

gravitational constant (G) and the mass of the earth;

a three-by=-three identity matrix.

In the (r,s,z) system,

I
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represents

(4)

If the operator é% is denoted by D, and f is the true anomaly of

the reference orbit, da can be shown (Reference 1) to be

(%3]

(5)

etc.})



in a rotating (r,s,z) system, as observed from a nonrotating system.
Equation (3) can then be analytically or numerically integrated
to yield the motion of the particle relative to a two-body reference
trajectory. This has been carried out analytically for the case when
d = 0 by Stern (Refernce 1).
When the reference orbit is circular and of frequency w, it is
convenient to define the operator F = jgg-(Reference 2) . Egquation (5)

can then be written as

B! -2F 0
sa = u? 2F F? -1 0o | or. (6)
0 0 F?
. )

F2 - 3  -2F 0
w? 2F F2 0o | ex= a (. (7)
0 0 F 41

II.3 Integration of the Variational Equations of Motion

in Rotating Coordinates

In order to integrate (7), the disturbing acceleration d must be
specified. The aerodynamic forces depend on the orientation of a
nonspherical spacecraft, but might be nearly constant in vertical
hold except for the dependence of atmospheric density on orbital
parameters, including a peroidic variation at orbital freguency. A
nonrotating spacecraft would acguire additional variations at twice
orbital fregquency.

As a simple example, however, d is assumed to consist of only a

constant aerodynamic drag acceleration, so that in rotating coordinates

0
a= |al.
0
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Even with this assumption, however, the analysis should reveal

something about the motion of a particle in a vertical hold mode.

Integration of (7) yields the positions and their derivatives with

respect to the true anomaly f, in terms of six arbitrary constants:

sin £

cos £

0 sin

¢ 2cos

cos f 0
0 ‘cos
0 -2sin
-sin £ 0
[ 2f i
-3/2 £°
0
) .
~-3f
0
L o

cos £

-2gsin f

‘-sin f

-2cos £

2 0
~-3f 1
0 0
0 0
-3 0
0 0

(8)




The constants may be replaced by the initial values of the state vector,

and (8) may be expressed as

- - =
Fér Sr
8s ds
Sz Sz
= - [N
(8x)? (8xr)*
(8s) ! (8s) "
(8z) ' (8z) '
e . o
t = tj t = ti
where 6 =z £, =~ fi’ and jS (6) is a 6 x 6 matrix. Due to the circular

J
reference orbit,

and equation (9) can be transformed into the time domain again.
Consequently, the state vector gj, which was previously defined by (1),
is

= 0¢.. X (10)

X .+ R,
-] Jji -1 -7

where ®‘i is the state transition matrix:

e}



4 -~ 3cosb 0 0 1 sin® z(l—cose) 0
w w
6 (51n6=86) 1 0 -2(1-cose) 2%Ising
: 1,
0 0 cosh 0 0 a sin8
S, . =
Jx
3wsind 0 0 coso 2sing 0
6w (cosb-1) 0 0 ~-2sinb ~3+4cosb 0
L 0 0 -wsin® 0 0 cos
(11)

and Eji contains the effects of the disturbance force:

2(6-sinsv)
2
-3/2 6 + 4(l-cos8)
331 = — . (12)
2w(l-cos8)

w(—~38 + 4sinb)

To convert to the nonrotating system, the position and velocities
must be transformed in the following manner, keeping in mind that the

coordinate axes coincide at ti(e = 0):



where

i cosH - -sind 0 0 0 0
sind cos® 0 0 0 0

0 0 1 0 0 0
~wsind ~-wecos o 0 cosd -sin6 0
wcoeso -wsind 0 sind cosb 0

0 0 0 0 0 1

It follows that Xj' as defined by (2), can be written as

where

and

Y, = Y.. ¥. + 8..
| 31 —1 =ji

i 3.2 W

56 sin® + 26cos6 + sin@(2cosf-4)

- 262 cosé + 20sin6 + 4cose —2(1+cos8)

0

62 cos® + 6sinB + cosb(4cosB-2) —2]

njw

62 - fcosb + sine(4cose—2)}

| W

o {

(13)

(14)
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III. VARIANT MOTION RELATIVE TO AN INERTIALLY NONROTATING SPACECRAFT

With an inertially nonrotating spacecraft, the drag force compli-
cates the eguations of motion (1l4) to such an extent that the drag is
ignored for now. As it turns out, it is very difficult to restrain
the motion of the particle even in the absence of disturbing forces.

Inspection of (15) reveals that initial displacements out of the
orbital plane are not coupled to the x-y motion, and vice versa.
Hence, the two cases can be considered independently. 1In the out-of~-
plane case,

6Vz
§z = cos6 8z, + sind L.
i w

Unfortunately, the particle will always oscillate between + 6zig or
farther. As will be shown, these are much larger excursions than are
necessary with the appropriate choice of initial conditions in the
xX-y plane.

Further inspection of (15) for the in-plane case reveals that the
excursions from the center of mass will grow with time unless the
secular terms are eliminated by setting

= -— 'i %
Gvyi waxi. (16}
This leaves three independent initial conditions to be determined sc
that in some sense the motion of the particle is minimized.

It may be desirable to keep the particle as close to its initial
position as possible. To achieve this, it is necessary to minimize
the magnitude of the vector £ for a given IdEi[ where € = 6r -~ 651
(Figure III).



particle

d

e(t)

~~initial position
of particle

{-s

8§x

center of mass

Earth , of spacecraft

// reference orbit

Figure III.

™
1f

§x - dxi
sV
X

= Gxi [sinze} + Gyi [sine(l - cose)] +

= [sine(z - cose)]

and
gy = 8y = dyi _ 6VX
= 6xi [—sinecose] + Gyi [cose(cose— l)] + m 1 [(l - cose)Z] .
el
The results of the minimization of are shown in Figure IV.
|6£i|
Foy évq = -0.43 w6yi and 6xi = 0, the particle can be kept within

0.45 of its initial displacement from the center of mass. The
corresponding trajectory, relative to the 6x, 8y coordinates, is

indicated in Figure V.
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[srs |
.5
.0
.5
1 I | ] 0.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
6in/w6yi

Figure IV. Maximum Excursions from Initial Position
in Inertial Hold with avy = —wSxi.
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6= initial position
8 =0, 2m,...

6 = 31/2_~ S~ = q/2

center of mass
of spacecraft

§x

Figure V. Trajectory in Inertial Hold with

GXi = Gvyi=-0, GVX1= —.43w6yi.



Since it is advantageous to locate the
center of mass as possible, it is necessary
positicn as well as the excursions from it.

to be an elongated body, as is Skylab, with

package as close to the
to consider the initial
The spacecraft is assumed
the work area located a

large distance from the center of mass (Figure VI). The particle is

also assumed to be initially located at some point along the longitu-

dinal axis which passes through the center of mass. For large "a,"

the angle ¢ will not change much even if the assumption is not guite

true.

Two displacements are then examined:

€
perp-
perpendicular to the longitudinal axis; and €

, which is the excursion

axis’ the displacement

from the initial position measured along the axis. From Figure VI,

Eperp = &y sin¢ - Ey coso
and
€axis = Cx cos¢ + ey sing.
Let
€ € .
n = perp and £ = axis
|sx, | lox, |
=i '

and the guantities of interest are then

€ = a]nlmax
perp T
1+ %nin

and

Ae = 20&ax = &nin) .

axis
1+ Qnin

These represent the range of displacements, for a given "a," perpendicu-

lar to the axis and along it, respectively.

Eperp/a and Ae

The dimensionless ratios

/a can be compared for various initial conditions,

axis
as shown in Figure VII.
€ /a reaches a minimum value of 0.5 at §V = - 0.5 wdy, and
perp X i

i
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Ae_ .
elther éxi = 0 or Gyi = 0. The ratio —221%

is also minimized
iﬁaaxjs/a = 1.0) for these same conditions. Interestingly, the

trajectory for each case is a circle at twice orbital frequency

(Figure VIII).

For Sxi = 0 and GVX = - 0.43wc5yi (the conditions previously

found £ T . _ ' -
found for mimimizing [El/!égll), Eperp/a 0.74 and AE_ . /a = 1.33.

The new optimizations are clearly an improvement over this case in

X

terms of restricting the range of the particle.

::;1 itudinal
. ongitu

8y 7 axis of

7~ spacecraft

— Work area of
spacecraft

particle

initial position of particle

§x

\ 4

\\center of mass of spacecraft

Figure VI. Geometry When the Work Area Is a Large Distance
from the Center of Mass.



Figure VII.

Maximum Excursions Perpendicular and
Parallel to Longitudinal Axis of Space-

craft with 6vyi = —wdxi.

-0.6 -0.4 -0.2 0.0

0.

0
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An an example of how large these excursions are, assume "a"
o be 30 feet, approximately that for Skylab. This means that, at
best, the object will float 15 feet away from the longitudinal axis
and 30 feet along the axis. With the dimensions of the work area of
Skyiab on the order of 7 to 10 feet, it appears as if it is impossible

=0 allow an experiment package to float inside a Skyleb in inertial

unless 1) an enormous amount of space is made available, 2) the

r of mass is moved much nearer the work area, or 3) the spacecraft

iz maneuvered occasionally to "follow" the package.

,,//””_—"_'1nitia1 position

gév = —.5w6yi
} i
5 6x; =0 va_ =0 |
i
é initial Sy; =0
position
| R
§x
center of T lsr: |

mass of spacecraft

1]

Figure VIIT. Trajectories in Inertial Hold with 8v

v -wdxi,
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IV. VARIANT MOTION RELATIVE TO A SPACECRAFT IN VERTICAL HOLD

In a vertical hold mode, it is much easier to control the relative
motion of the particle. In the absence of drag, for example, the
particle remains motionless at §s = Gsi for initial conditions dri =

SVr- = 4§V = 6zi = 4V

i S; z, = 0 (11).

The effect of constant drag, however, is to introduce secular
terms which grow as time squared (12); the secular terms due to
gravity gradients only increase linearly with time. Hence, the best
that can be done is to trade off one against the other for as long as
possible, i.e., until the drag dominates.

As before, the out-of-plane case can be disregarded due to the

large excursions which result from initial out-of-plane displacement

and velocity (11l). Inspection of (ll) reveals that many of the oscil-
latory terms cancel with the choice of GVS = - 3/2w6ri. The components
of the vector & = dr - 5£i can then be written as

I a o]
e, = [E s1n6] 5Vr. + = [2(8 51neh
i w
and
(17)

e = [— 3/2 e] Sr.

i = [%(l - coseﬂ SVr

i

+ % [— 3/2 82 + 4(1 - cose)].
w

Note that both . and €, are independent of Gsi, and with the
preceeding choice of GVS., € 5 is independent of Gri. The first
observation is importantlbecause the spacecraft may well be oriented
with zero angle of attack in order to minimize the effects of drag
(Reference 3). The 8s axis then aligns with the longitudinal axis;
'hence, the location of the center of mass becomes of little practical
importance.

A further observation of (17) is that GVr_ does not affect any of
the secular terms. It therefore plays a minor‘role in the attempt to
confine the particle for as long as possible. For this reason, and

in order to simplify the analysis, GVr is assumed to be zero. In
i



Figure IX. Length of Time for which
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some cases, however, a non-zero value of dvr can improve the perfor-
i
mance siightly.
Since the drag will ultimately cause the particle to accelerate

in the negative {§s direction, a negative dri must be chosen in order

witially get the particle moving in the positive §s direction (17).

and € will denote the maximum excursions in the positive &8r
B max

ds directions, respectively, and emax is the angle the orbit

eps through before eg returns to zero. In order to determine emax'
values for g (or €. )} and d/w2 must be specified. ¢ is
max max max
assumed to be about 7 feet, with e at least that large. For 1974,
max
2 mean value of d/w2 = 0.166 feet is selected for Skylab at zero angle

of attack at 435 km. (Reference 4).

Figures IX and X indicate the results of the investigation of the

ticonships among em

ax s

max max

the nominal values selected. For the specific case where ¢ =7
max

feet and d/w2 = 0.166 feet, emax = 10.29 radians and Gri must be

2
; € , € , d/w”, and dri for values near

-1l.64 feet (Figure IX). From Figure X, Er is found to be 3.7 feet.
Thus, the excursions in the 8r direction aﬁleess than in the longitu-
dinal direction, and the particle can be confined for slightly more
than l%»orbits. The trajectory is shown in Figure XI.

Figure IX reveals the great advantage of operating at low levels
drag (high altitude, low solar activity, small angle of attack), as

the curves of constant d/w2 not only shift to the left, but the slopes

inor

ease significantly, allowing one to operate for much longer
pariods of time with excursions of only a few feet.

I% should be kept in mind, however, that the drag, which has
heen assumed to be constant, may actually vary a great deal during the
course of an orbit, although the major variation will be periodic. It
should also be emphasized that the results shown in Figures IX and X

depend on the particular values of SVI and GVS selected earlier.
i i
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feet

Figure XI.

Trajectory in Vertical Hold for

€ = 7 feet with
max
4= 0.166 feet, sv. =0,
Y.
w 1
vy = -3/2 wdry, Sr. = -1.64 feet.




sli

mentioned, positive 5vr may improve the results slightly; larger
i

3 ey

ghtly in some cases.

will, in general, trade off increased excursions in the &r

ection for decreases in the 8s direction, while am is lengthened

ax

Considering then, the many assumptions involved and the focusing

this analysis on one particular set of initial velocities, no

attempt has been made to select the optimum conditions for all circum~-

o}
[t

oy
jRE =

fa

Oy

stances. But the results do represent an approximation to the kind of

formance to be expected during a Skylab mission in vertical hold.



V. SUMMARY AND CONCLUSIONS

The foregoing analysis has outlined the steps necessary to deter-
mine the perturbed motion of a particle relative to the center of mass
of a spacecraft in earth orbit. Two simple cases, which could be
treated analytically, were examined in detail, the purpose being to
keep a freely floating experiment package from colliding with the
environs.

The problem was to determine the initial conditions necessary
for the desired trajectory. In general, this would regquire inversion
of six-by-six matrices like (11) and (15), a task which was avoided
here. 1Instead, a number of trials were run to obtain a feeling for the
appropriate initial conditions, for a given circumstance. For an
inertially nonrotating Skylab in circular earth orbit, where the work
area 1s located an appreciable distance from the center of mass
(compared to the work lab dimensions), it was learned that it is highly
unlikely that a collision during the first orbit could be avoided,
unless the spacecraft was to be manuevered from time to time.

In the vertical hold mode, however, the experiment package would
not move at all relative to the spacecraft, when given the proper
initial conditions, if it were not for perturbing forces such as
aerodynamic drag. Assuming constant drag for a projected Skylab
flight in 1974, it was shown that the package could be contained
within a 4 foot x 7 foot area for about l% orbits.

The primary conclusion is, then, that within the present designs
of Skylab and its principal modes of operation (vertical and inertial
hold), it would be very difficult to operate a free fall experiment
inside the spacecraft for an extended length of time unless the
spacecraft was maneuvered occasionally, or additional perturbating
forces were applied. The major difficulties appear to be 1) the
remote location of the work area with respect to the center of mass,

and 2) the relatively high level of drag encountered at 435 km.
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